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SUMMARY

The variational multiscale method provides a methodical framework for large eddy simulation of turbu-
lent �ows. In this work, a particular implementation in the form of a three-level �nite element method
separating large resolved, small resolved, and unresolved scales is proposed. Residual-free bubbles are
used for the numerical approximation of the small-scale momentum equation. A stabilizing term is
added, in order to take into account the e�ect of the small-scale continuity equation. This implementa-
tion guarantees the stability of the method without further provisions and o�ers substantial computational
savings on the small-scale level. Furthermore, it is accounted for the unresolved scales by a speci�c
dynamic modelling procedure. The method is tested for two di�erent turbulent �ow situations. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Incompressible �ow is mathematically speci�ed by the incompressible version of the set of
Navier–Stokes equations. They are basically valid for both laminar and turbulent �ow, although
these �ow states are quite di�erent from a physical point of view. The occurrence of one or
the other state strongly depends on the Reynolds number associated with the �ow. In typical
engineering applications, turbulent �ows are surely prevalent due to their positive features like,
for instance, a more e�ective transport and mixing ability with respect to a comparable laminar
�ow. The straightforward approach for a numerical solution of a turbulent �ow called direct
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numerical simulation (DNS), i.e. simply solving the Navier–Stokes equations numerically with
full resolution and appropriate boundary conditions, reaches its limitations soon. Lowering the
demands of resolution leads to what is established under the name ‘large eddy simulation’
(LES) in the meantime. See, for example, Reference [1] for a comprehensive overview. LES
aims at a complete resolution of the large-scale structure of the turbulent �ow, and the e�ect
of the smaller scales, which are not acquired by this resolution, is modelled. Traditionally,
the unresolved scales are distinguished from the resolved scales by the application of a spatial
�lter of limited extent. The computational e�ort required for LES may be less than the one
for DNS, but it is still of substantial complexity. Hence, it is still not possible to perform LES
for most of the turbulent �ows arising in engineering applications. Nevertheless, it appears to
be more auspicious to believe in LES than in DNS in the near future.
There is also a framework for dealing with multiscale problems of computational mechan-

ics in general: the variational multiscale method. This theoretical framework was established
by Hughes [2] and further developed as a powerful means for problems of computational
mechanics having to deal with large ranges of scales by Hughes and co-workers [3, 4]. The
basic concept consists in distinguishing scale groups, for example, large and small scales or
resolved and unresolved scales, respectively. This methodical framework was also applied to
the problem of the incompressible Navier–Stokes equations, in order to facilitate numerical
simulations in the sense of LES. See Reference [5] for a theoretical elaboration and Refer-
ences [6, 7] for results of some early applications. In contrast to using a �lter in traditional
LES, variational projection separates scale ranges within the variational multiscale method.
Aside from the use of a variational projection in preference to a spatial �lter, the second
characteristic feature of LES based on the variational multiscale method is that the direct
in�uence of the subgrid-scale model is con�ned to the small resolved scales.
It should be remarked that the initial concept of the variational multiscale method as Hughes

and co-workers proposed it in their publications assumes a separation of two scale ranges.
Nevertheless, the framework allows various other arrangements going beyond this two-scale
decomposition. Independently, Collis [8] and Gravemeier et al. [9] have recently broadened
the variational multiscale method for LES by raising the number of separated scale ranges
beyond the original twofold separation. A completely di�erent numerical treatment for any
of these ranges is enabled, for instance, by using the �nite element method. The variational
multiscale method is basically open for the application within a Galerkin �nite element method,
and this will, in fact, be the method of choice in this work. However, it is not restricted to
this speci�c numerical method. At this stage, it should be pointed out that the variational
multiscale method is, from a practical standpoint, ‘merely’ a theoretical framework for the
separation of scales. Corresponding practical methods �tting in this framework, on the one
hand, and enabling an implementation as a computational algorithm, on the other hand, are
still rare. For such practical methods, it is crucial that a clear separation of the di�erent ranges
is actually achieved.
The Galerkin �nite element method represents a hazardous choice for problems of �uid

mechanics. Independent of the actual �ow regime, it is, in general, not possible to achieve
unspoilt results using the standard form of the Galerkin �nite element method in case of
a dominating convective term without resorting to an extremely �ne discretization level. In
Reference [10], it was proposed to apply a subgrid-scale model only to the small resolved
scales, in order to preserve stability for a reasonably �ne discretization. This approach is
consistent with the second characteristic feature of LES based on the variational multiscale
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method as mentioned above, although it was not applied in this speci�c context in Reference
[10]. The second problem, which has to be dealt with in the context of the Navier–Stokes
equations, is the required ful�llment of the so-called inf–sup condition, which is exhaustively
described e.g. in Reference [11]. Recent work concerning the variational multiscale method
within the �nite element method can be found in References [12, 13].
In the present work, a practical implementation using a �nite element method based on

the separation of three scale ranges will be presented. This method is called ‘three-level
�nite element method’ (3LFEM). It has already been developed and applied to laminar �ow
situations in Reference [14]. The main features of this method are, on the one hand, its inherent
stability without any demand for further measures with regard to the aforementioned numerical
problems and, on the other hand, substantial computational savings on the small-scale level due
to a localized approach. However, one has to ‘pay’ for this gain in computational e�ciency
by accepting a lower accuracy with respect to the smaller resolved scales, as will be seen
below. In Section 2, a separation of two scales in the sense of a classical LES is brought
into the framework of a Galerkin �nite element method. Thus, the spatial �lter in a classical
LES is replaced by the variational projection of the Galerkin �nite element method as the
‘tool’ for separating scale ranges. Section 3 contains the variational multiscale method in
form of a three-scale separation. The combined strategy on the small-scale level based on
residual-free bubbles and a stabilizing term is outlined in Section 3. The three-level �nite
element method presented in Section 4 represents the practical implementation following the
theoretical considerations in the preceding sections. A comparative discussion with respect to
the dynamic modelling procedure in Reference [15] and some remarks on the relative choice
of the large- and small-scale spaces are the contents of Section 5. Two numerical examples
are shown in Section 6. Finally, conclusions are drawn in Section 7.

2. LARGE EDDY SIMULATION WITHIN A GALERKIN FINITE
ELEMENT METHOD

The set of incompressible Navier–Stokes equations is usually phrased in the primitive variables
velocity u and kinematic pressure p, i.e. pressure divided by density. It is searched for u :
�× (0; T )→Rd and p : �× (0; T )→R such that

@u
@t
+∇ · (u⊗ u) +∇p − 2�∇ · �(u) = f in �× (0; T ) (1)

∇ · u = 0 in �× (0; T ) (2)

with the boundary conditions

u = g on �g × (0; T ) (3)

n ·� = n · (−pI+ 2��(u))= h on �h × (0; T ) (4)

and the initial condition

u= u0 in �× {0} (5)
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where the initial velocity �eld u0 is assumed to be divergence-free. The variational form of
the Navier–Stokes equations is given as

BNS(v; q; u; p)= (v; f)� + (v; h)�h (6)

where v and q denote the weighting functions. The form BNS(v; q; u; p) on the left-hand side
of (6) is obtained after integrating by parts the viscous as well as the pressure term such that

BNS(v; q; u; p) =
(
v;

@u
@t

)
�
+ (v;∇ · (u⊗ u))� − (∇ · v; p)� + (�(v); 2��(u))� − (q;∇ · u)� (7)

The L2-inner product in the domain � or on the Neumann boundary �h, respectively, on the
right-hand side of (6) is de�ned as usual:

(v; f)� =
∫
�
vf d� (8)

The vectorial solution function space for the velocity is de�ned as

Su= {u∈ (H 1(�))d|u= g on �g} (9)

and the corresponding weighting function space as

Vu= {v∈ (H 1(�))d|v= 0 on �g} (10)

The scalar solution function space for the pressure is given as

Sp=L2;0(�)= {p∈L2(�)|(p; 1)� =0} (11)

if meas(�h)=0, else

Sp=L2(�) (12)

The corresponding weighting function space is de�ned as

Vq=L2(�) (13)

In combined form, the solution and weighting function spaces may be written as

Sup :=Su ×Sp; Vup :=Vu ×Vp (14)

The interpretation of the Galerkin �nite element method as a projection is extensively dis-
cussed in Reference [16, Appendix 3]. The main aspects for the underlying purpose are
summarized in Reference [17]. Thus, this discussion may be omitted here, and the Galerkin
projection will now be applied as an implicit �lter for LES. For this purpose, an intuitive
procedure will be followed here by adopting the separation of the velocity and the pressure
from classical LES and incorporating them into the �nite element framework as

u= uh + û; p=ph + p̂ (15)

The resolved parts of the variables are indicated by the superscript h, which denotes the
characteristic element length for scale resolution and, hence, speci�es the size of the implicit
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�lter, and the unresolved terms by (·̂). Decompositions (15) are then introduced into (6)
yielding

BNS(vh; qh; uh + û; ph + p̂)= (vh; f)� + (vh; h)�h ∀{vh; qh} ∈Vh
up (16)

where Vh
up denotes the respective �nite-dimensional weighting function space. The form BNS

is linearized according to Reference [5] by expanding it as

BNS(vh; qh; uh + û; ph + p̂) = BNS(vh; qh; uh; ph) +
d
d�

BNS(vh; qh; uh + �û; ph + �p̂)|�=0

+
d2

d�2
BNS(vh; qh; uh + �û; ph + �p̂)|�=0

= BNS(vh; qh; uh; ph) + B1NS(v
h; qh; uh; û; p̂) + B2NS(v

h; û) (17)

where BNS(vh; qh; uh; ph) is given according to (7),

B1NS(v
h; qh; uh; û; p̂) =

d
d�

BNS(vh; qh; uh + �û; ph + �p̂)|�=0

=
(
vh;

@û
@t

)
�
+ (vh;∇ · (uh ⊗ û) +∇ · (û⊗ uh))� − (∇ · vh; p̂)�

+(�(vh); 2��(û))� − (qh;∇ · û)� (18)

and

B2NS(v
h; û)=

d2

d�2
BNS(vh; qh; uh + �û; ph + �p̂)|�=0 = (vh;∇ · (û⊗ û))� (19)

Rearranging (16) with the help of (17) yields

BNS(vh; qh; uh; ph) = (vh; f)� + (vh; h)�h − B1NS(v
h; qh; uh; û; p̂)

−B2NS(v
h; û) ∀{vh; qh} ∈Vh

up (20)

The last two terms on the right-hand side of (20) may be identi�ed as the in�uence of the
unresolved scales onto the resolved scales. In terms of an interpretation of the Galerkin FEM
as a projection, these two terms can be viewed as the projection of the unresolved scales
onto the subspace of the resolved scales—and, hence, it is only this projection that has to be
represented by a subgrid-scale model here, see also Reference [8].
It is accounted for the unknown projective terms on the right-hand side of (20) by a subgrid

viscosity term according to the classical concept of Boussinesq. However, since it is intended
to use equal-order element interpolations for velocity and pressure, a stabilization term in the
sense of the PSPG-method according to Reference [18] is introduced additionally, in order
to circumvent the inf–sup-condition which the standard Galerkin �nite element formulation
is subject to. The addition of these two terms to the left-hand side with the simultaneous
omission of the two unknown (and, in fact, uncomputable) terms on the right-hand side
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changes (20) to

BNS(vh; qh; uh; ph) + (�(vh); 2�T�(uh))� +
nel∑
e=1
(∇qh; �Me RM

NS(u
h; ph))�e

= (vh; f)� + (vh; h)�h ∀{vh; qh} ∈Vh
up (21)

where the subgrid viscosity is denoted by �T and the residual of the Navier–Stokes momentum
equation by RM

NS. The stabilizing term is de�ned elementwise, i.e. for each element e of the
discretization with element domain �e, and summed over all nel elements of the discretization.
The algebraic stabilization parameter in the respective element is �Me . Appropriate formulas
for the calculation of �Me can be found in References [18, 19]. What remains to be speci�ed
is a modelling assumption for the subgrid viscosity �T. The Smagorinsky model [20] was the
�rst subgrid-scale model and is still a commonly used one due to its attractive simplicity. It
is given as

�T = (CSh)2|�(uh)| (22)

where the characteristic �lter length � included in the original �lter-based formulation is here
replaced by the characteristic element length h in LES based on a Galerkin projection. The
weak point of the Smagorinsky model is represented by the constant CS in (22). Numerous
authors addressed this issue, and perhaps the most important improvement was achieved by
the dynamic modelling procedure of Germano et al. [15], enabling a computation of CS as
a function of time and position. It is interesting to note that the dynamic modelling proce-
dure already distinguishes large resolved scales, small resolved scales, and unresolved scales
explicitly. This mirrors the type of scale separation to be presented in the following section.

3. VARIATIONAL MULTISCALE METHOD SEPARATING THREE SCALE RANGES

The main equation of the preceding section, (20), would have been obtained in similar form
as the so-called ‘large-scale equation’, if a two-scale separation into large and small scales
according to the original formulation of the variational multiscale method had been applied.
In this case, the weighting functions in (20) would have been represented by their large-scale
parts. Consequently, the corresponding small-scale equation would have revealed the same
structure, with the small-scale parts of the weighting functions acting. Of course, there is no
chance of actually solving this small-scale equation under the aforementioned circumstances.
Thus, this equation may, in fact, be termed ‘unresolved-scale equation’ rather than small-scale
equation, which precisely expresses this inability to solve it. Please consult Reference [17]
for elaboration.
It is now intended to go one step further in separating three scale ranges. For this purpose,

the solution and weighting function spaces are separated as follows:

Sup = 	Sup ⊕S′
up ⊕ Ŝup (23)

Vup = 	Vup ⊕V′
up ⊕ V̂up (24)

In a discrete case, it is explicitly dealt with large resolved scales, which are indicated by
(·), small resolved scales, which are indicated by (·)′, and unresolved scales. According to

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1067–1099



LES OF TURBULENT INCOMPRESSIBLE FLOWS BY A THREE-LEVEL FEM 1073

this, the large- and small-scale function spaces are replaced by �nite-dimensional spaces with
characteristic element length 	h and h′, respectively, and the function space related to the unre-
solved scales of the problem is necessarily in�nite-dimensional. For convenience of notation,
the superscripts indicating the characteristic element lengths will be left out in the following.
The equation system is given as

BNS(	v; 	q; 	u+ u′ + û; 	p+ p′ + p̂) = (	v; f)� + (	v; h)�h ∀{	v; 	q} ∈ 	Vup (25)
BNS(v′; q′; 	u+ u′ + û; 	p+ p′ + p̂) = (v′; f)� + (v′; h)�h ∀{v′; q′} ∈V′

up (26)

BNS(v̂; q̂; 	u+ u′ + û; 	p+ p′ + p̂) = (v̂; f)� + (v̂; h)�h ∀{v̂; q̂} ∈ V̂up (27)

It is assumed that

BNS(	v; 	q; û; p̂)≈ 0 (28)

which relies on a clear separation of the large-scale space and the space of unresolved scales.
As indicated in Reference [8], this amounts to be the �rst modelling step. Likewise the
opposite projection is assumed to be

BNS(v̂; q̂; 	u; 	p)≈ 0 (29)

These two assumptions lead to a simpli�ed equation system by changing (25) to

BNS(	v; 	q; 	u+ u′; 	p+ p′)= (	v; f)� + (	v; h)�h ∀{	v; 	q} ∈ 	Vup (30)

and (27) to

BNS(v̂; q̂; u′ + û; p′ + p̂)= (v̂; f)� + (v̂; h)�h ∀{v̂; q̂} ∈ V̂up (31)

whereas (26) remains unchanged.
It is not intended to resolve anything which is called ‘unresolved’ a priori. Taking into

account the e�ect of the unresolved scales onto the small scales is the only desire. Several
alternatives lend themselves to this purpose (see Reference [17]), but the focus here is on
the subgrid viscosity approach. It should be emphasized that it is merely accounted for the
dissipative e�ect of the unresolved scales onto the resolved scales by using this approach.
The small-scale equation then reads

BNS(v′; q′; 	u+ u′; 	p+ p′) + (�(v′); 2�′T�(u′))�
= (v′; f)� + (v′; h)�h ∀{v′; q′} ∈V′

up (32)

where the subgrid viscosity �′T has to be distinguished from the subgrid viscosity �T introduced
in the previous section. It may be determined subject to a variety of model formulations, see
Reference [17]. In the context of the dynamic modelling procedure to be presented below,
however, it is not necessary to specify a particular model formulation like, for instance, the
Smagorinsky model, since this dynamic modelling procedure aims at determining the value of
the subgrid viscosity directly. Note that, due to assumption (28), the subgrid viscosity term
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VMM--2--DNS

VMM--2--LES

VMM--3--DNS

VMM--3--LES

inertial
subrange

dissipation
range

energy--con-
taining range

Figure 1. Kolmogorov energy spectrum for two- and three-scale separation of VMM.

directly acts only on the small resolved scales. Indirect in�uence on the large resolved scales,
however, is ensured due to the coupling of the large- and the small-scale equations.
The three-scale separation represents a consequential extension of a two-scale separation,

see References [14, 17]. In Figure 1, the Kolmogorov energy spectrum is displayed for the
di�erent situations of a two- and a three-scale separation. For clarity of notation, the super-
scripts indicating the characteristic element lengths are included in Figure 1. It is observable
that there are two ways of performing DNS or LES. A DNS may result from completely
resolving all scales necessary therefore by the large-scale space. Alternatively, the same may
be done by distributing these scales among a large- and a small-scale space. Whereas this
distinction may be more or less of academic nature for a DNS, it represents a crucial decision
for a LES. In contrast to a two-scale LES, a three-scale LES provides one with the oppor-
tunity of letting the subgrid-scale model directly act only on the small-scale space, which is
consistent with Equations (30)–(32). It has been dissected by Hughes and co-workers [5–7]
that the crucial advantage of LES based on the variational multiscale method refers to the fact
that the dissipative model directly acts only on the smaller of the resolved scales. Hence, the
large scales are treated in a DNS-like manner, guaranteeing consistency, if adequate resolution
is already achieved by the large-scale space. This last case represents a natural switch to a
‘VMM-2-DNS’, see Figure 1. It should be remarked that the idea of restricting the modelling
e�orts to the small scales may also be transferred back to the classical �lter-based proce-
dure. First ideas in this direction have recently been presented in Reference [21]. Finally,
it is referred to Section 5, where this discussion will be renewed. In particular, a principal
comparison to the dynamic modelling procedure of Germano et al. [15] will be carried out
there, and some remarks concerning the choice of the absolute and relative size of the large-
and small-scale space will be made.
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3. COMBINED APPROACH FOR SMALL SCALES: RESIDUAL-FREE BUBBLES
AND STABILIZING TERM

Using residual-free bubbles means obeying two basic rules:

• The governing di�erential equation has to be satis�ed by the complete solution function
in strong form on every individual element domain �e of the basic discretization.

• Zero Dirichlet boundary conditions are assumed for the small-scale part of the solution
function on the boundaries of every individual element domain �e.

For the underlying case of a separation of the resolved solution function into a large- and a
small-scale part, following the above rules amounts to selecting the small-scale bubble part of
the solution function such that the governing equation is solved in every individual element up
to the large-scale part of the solution function. Correspondingly, the residual of the large-scale
part of the solution function appears on the right-hand side of the residual-free bubble equation
representing the ‘driving force’ of this equation. As aforementioned, this equation is subject to
homogeneous Dirichlet boundary conditions. A selection of the respective literature addressing
residual-free bubbles in general and, in particular, for convection–di�usion problems, authored
by Brezzi, Farhat, Franca, Hughes, Russo and co-workers, is named: [22–26].
The strong form of the small-scale equation which corresponds to the weak form (32) reads

@u′

@t
+∇ · (u′ ⊗ u) +∇p′ − 2(�+ �′T

e )∇ · �(u′)

= −@	u
@t

− ∇ · (	u⊗ u)− ∇ 	p+ 2�∇ · �(	u) + f in �e × (0; T ) (33)

∇ · u′ =−∇ · 	u in �e × (0; T ) (34)

u′ = 0 on �e × (0; T ) (35)

Note the zero Dirichlet boundary conditions on all element borders and the fact that �′T
e is

assumed to be constant within one element domain �e. The small-scale continuity equation
(34) may be replaced by a small-scale pressure Poisson equation (PPE) as

�p′ +∇ · (u · ∇u′ − ��u′)= − ∇ · [RM
NS(	u; 	p)] in �e × (0; T ) (36)

where the structure of a consistent PPE according to Reference [16] has been adapted for
the small scales. The right-hand side of (36) is constituted by the negative divergence of the
residual of the large-scale momentum equation.
Firstly, it is focussed on the small-scale momentum equation (33). To the authors’ knowl-

edge, the �rst attempt of using residual-free bubbles for the stabilization of a linearized sta-
tionary Navier–Stokes problem has to be credited to Russo [27]. The separation of function
spaces, which is merely carried out for the weighting function space here, reads

Vup ≈ 	Vup ⊕V′
u;RFB = 	Vup ⊕�e(B(�e))d; e=1; : : : ; nel (37)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1067–1099
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with the usual assumption being (B(�e))d=(H 1
0 (�e))d. As may be observed by inspecting

the subscripts, the bubble space exclusively enhances the velocity approximation, i.e. p′=0.
Insights into approaches to satisfy the inf–sup condition emphasize the reasonability of this
concept, see Reference [17]. By choosing p′=0, a larger function space for the approximation
of the velocity in comparison to the one for the approximation of the pressure is guaranteed.
As a result, (33) can now be simpli�ed to

@u′

@t
+∇ · (u′ ⊗ u)− 2(�+ �′T

e )∇ · �(u′)

= −@	u
@t

− ∇ · (	u⊗ u)− ∇ 	p+ 2�∇ · �(	u) + f in �e × (0; T ) (38)

If one were able to solve (38) in every element of the basic discretization, the small-scale
velocity would be obtained as a sum of these elementwise solutions. The result for u′, along
with the assumption p′=0, may then be integrated into the variational large-scale equation
(30) leaving one �nal equation to be solved. Details of an approach which aims at solving
directly for shape function components of the small-scale velocity as well as furthergoing
assumptions, which enable such a separation into shape function components, are described
in Reference [17]. The resulting shape function components of the small-scale velocity are
eventually substituted into the large-scale equation in the course of a static condensation
procedure.
Secondly, it is returned to the small-scale continuity equation (34) left out so far. Note

that this equation is actually not needed any more, since there is no small-scale pressure in
the small-scale momentum equation to be governed by the small-scale continuity equation. As
will be seen below, however, it may be helpful to revitalize some kind of small-scale pressure,
which is completely independent of the small-scale momentum equation. More precisely, it is
focussed on the small-scale PPE (36) and tried to �nd a solution. This should be helpful in
ful�lling the continuity condition on the small-scale level, an issue known to become more
important with increasing Reynolds number, see e.g. References [16, 19, 28]. Therefore, it
is supposed to be a crucial ingredient of the solution strategy, since this work deals with
turbulent �ows at relatively high Reynolds numbers.
The residual RM

NS(	u; 	p) on the right-hand side of (36) is assumed to be divergence-free or
else a potential component is subsumed in a modi�ed small-scale pressure such that

�p′
mod =�p′ +∇ · [RM

NS(	u; 	p)] (39)

The following Poisson equation for the modi�ed small-scale pressure may be obtained from
(36):

�p′
mod = − [u · ∇(∇ · 	u)− ��(∇ · 	u)]= − [u · ∇ − ��](∇ · 	u) (40)

It is not advisable to solve this di�erential equation for the small-scale pressure on the element
level besides the burden of solving the momentum equation, let alone the di�cult question
of useful pressure boundary conditions for (40) on the element boundaries. Here, it is rather
intended to incorporate the e�ect of the small-scale pressure Poisson equation and, thus, the
small-scale continuity equation into the �nal (large-scale) equation via an additional term in
the form of a stabilizing term. Thus, p′ is approximated as

p′ ≈ − �Ce (∇ · 	u)= − �Ce R
C
NS(	u) (41)
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where �Ce denotes an algebraic stabilization parameter and RC
NS(	u) the residual of the large-

scale continuity equation. In the large-scale equation, a bulk viscosity term reading

· · ·+
nel∑
e=1
(∇ · 	v; �Ce (∇ · 	u))�e · · · (42)

is added to the left-hand side. Recently, it has been shown in Reference [29] that the derivation
of this stabilizing term can be traced back to a potential introduction of something the authors
call ‘pressure bubble’. For �Ce , the de�nition of Codina [30] is adopted as

�Ce =

[
�2 +

(
c2
c1

|	u|h
)2]1=2

(43)

where the two constants are subject to

c1¿ c22 (44)

Finally, the strategy is summarized. Residual-free bubbles are used to solve the small-scale
momentum equation. Additionally, the e�ect of the small-scale continuity equation is incorpo-
rated by taking it into account via a stabilizing term in the �nal (large-scale) equation. Thus,
it is embarked on a combined residual-free bubble=stabilizing strategy. After all, the main
assumption p′=0 in the small-scale momentum equation means that the small-scale velocity
is exclusively driven by the residual of the large-scale momentum equation and not by the
residual of the continuity equation, see Reference [30]. Furthergoing discussions related to this
assumption may be found in References [14, 17]. It should be emphasized that the strategy
described in this section results in a completely stable method, i.e. there is no necessity to in-
clude any additional stabilizing term like, for instance, a PSPG-term as in the �rst line of (21).

4. THREE-LEVEL FINITE ELEMENT METHOD

The constituents of the three-level �nite element method, i.e. the discretizations on the various
levels and the solution strategy, are comprisingly depicted in Figure 2. Level 1 is represented
by standard �nite element spaces subject to (9)–(13) linked with a basic discretization. This
basic discretization is the support of the large-scale part of the solution and also the ‘source’
of every further discretization on level 2 and 3, since these discretizations are restricted to
individual elements of the basic discretization. Level 2 and 3 will be detailed in the following.
The stabilizing term in the form of a bulk viscosity term (BVT), which is eventually added to
the �nal (large-scale) equation besides the approximate residual-free bubble (RFB) functions,
is also indicated in Figure 2.

4.1. Level 2: approximate residual-free bubble functions based on elementwise submeshes

The idea of using a two-level �nite element method for the practical computation of residual-
free bubble functions can be traced back to Reference [31], where this methodology was
proposed for the Helmholtz equation. In the same year, the application of this approach to
convection–di�usion equations was published in Reference [32]. Afterwards, Nesliturk and
Franca also dealt with the stationary incompressible Navier–Stokes equations [33, 34]. In
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e

�e

Level 3: elementwise sub--submeshes

Iteration:
subgrid

viscosity

�e

Level 2: elementwise submeshes

→ approximate RFB (small--scale solution)

→ dynamic modeling of unresolved scales

�

�e

Level 1: basic discretization

RFB

BVT

→ standard FE space (large--scale solution)

Figure 2. Three-level �nite element method: discretizations and strategy.

Reference [14], the basic idea of this method was extended in order to use it for the insta-
tionary incompressible Navier–Stokes equations being semi-discretized in time. At the same
time, the validity of this approach for any kind of convection–di�usion-reaction equation was
shown.
On every individual element domain �e, a submesh is introduced. This discretization on

a second level or, more precisely, the number of nel discretizations on a second level is the
support for the small-scale part of the solution, i.e. the small-scale momentum equation (38)
subject to the residual-free bubble assumption. As aforementioned, (38) may be decomposed
into its basic shape function components. The decomposition process is described in detail in
Reference [17]. Finally, one obtains a certain number of scalar convection–di�usion-reaction
equations with identical left-hand side structure and varying right-hand sides. Due to this, a
representative equation in the form of a normalized equation, i.e. an equation with the right-
hand side equal to one, is used below to explain the solution process on the second and third
level. This normalized residual-free bubble equation is given as

u · ∇B1 − ��B1 +
1
�t

B1 = 1 in �e (45)

subject to the usual zero Dirichlet boundary conditions. In (45), B1 represents a place-holder
for the respective shape function components. In order to obtain (45) starting from (38), both
the convective and the viscous term have been simpli�ed using the continuity condition, and
the subgrid viscosity has been omitted for the time being.
Since one is normally unable to �nd an analytical solution to even this simpli�ed equation

(45), it is attempted to �nd an approximate residual-free bubble function BSM
1 in every ele-

ment of the original discretization. This is done with the aid of the elementwise submeshes
(SM). The approximate residual-free bubble BSM

1 then replaces the actually sought-after exact
residual-free bubble function B1. The variational form of (45) with the submesh weighting
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functions wSM is given as(
wSM; u · ∇BSM

1 +
1
�t

BSM
1

)
�e

+ (∇wSM; �∇BSM
1 )�e =(w

SM; 1)�e (46)

4.2. Level 3: dynamic modelling of unresolved scales based on elementwise sub-submeshes

If one were able to solve the variational problem (46), at least up to the necessary resolution
limit for a complete incorporation of all existing scales in the sense of a DNS, a fully satisfying
local solution for the small scales within every individual element domain �e would be
achieved. Of course, this solution is limited from a global perspective by the aforementioned
assumptions, in particular the crucial residual-free bubble assumption that the scales crossing
the element boundaries are not taken into account. As attractive this thought may still be, as
unlikely is it, in general, due to limited computer power. However, obtaining at least a good
approximation of B1 would be the second best choice and, more importantly, the one which
can be a�orded in general. The idea for this is basically the same as the idea underlying the
subgrid viscosity concept in a global context. Here, the elementwise equations are likewise
enhanced by the addition of a subgrid viscosity term. Thus, the quality of the approximation
as a whole depends on the quality of the approximation of the elementwise subgrid viscosity
�′T
e . The enhanced variational problem is given as(

wSM; u · ∇BSM
1 +

1
�t

BSM
1

)
�e

+ (∇wSM; (�+ �′T
e )∇BSM

1 )�e =(w
SM; 1)�e (47)

In order to reach beyond the limitations of a model based on an unknown constant like the
Smagorinsky model (22), a dynamic modelling procedure is chosen here. In Reference [35],
a dynamic tune-up for �′T

e was proposed from which a reasonably good value should arise.
Brezzi et al. [35] assumed a model formulation previously suggested in Reference [10] to
be the basis of their dynamic algorithm, which exhibits an obvious similarity with (22). In
Reference [17], it was shown that there was actually no need for any model assumption, since
a direct calculation of the subgrid viscosity is possible.
For the dynamic modelling procedure, a sub-submesh (SSM) is chosen, which is slightly

�ner than the original submesh (SM) and on which the variational equation (47) has to
be solved as well. Comparing these two solutions, the desired ‘good’ value for �′T

e may be
achieved. However, for this dynamic tune-up to be workable, in that an explicit value can be
obtained in the end, a criterion has to be established. Motivated by insights from the theory
of stabilized methods, the average integral of B1 on the large-scale element domain �e is
required to be equal to the corresponding value of the adequately resolved bubble for �′T

e =0
in (47) such that

1
|�e|

∫
�e

B1(�′T
e =0) d�e ≈ 1

|�e|
∫
�e

BSM
1 (�

′T
e ) d�e ≈ 1

|�e|
∫
�e

BSSM
1 (�′T

e ) d�e (48)

where the solution on the sub-submesh is indicated by the superscript SSM, see Reference
[35]. Criterion (48) governs an iterative algorithm amounting to be an extrapolation, with
the target of this extrapolation (hopefully) being the goal: a ‘good’ approximation of the
analytical residual-free bubble B1, i.e. the one for �′T

e =0. Variations of criterion (48) poten-
tially better suited for turbulent �ow applications are certainly conceivable, and it is intended
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to pursue them in future. The details of the dynamic modelling procedure can be found in
References [14, 17].

5. DISCUSSION

In Figure 3, a principal comparison is drawn between the dynamic modelling procedure of
Germano et al. [15] and the ‘VMM-3-LES’ with the dynamic modelling procedure outlined
above. Besides the fact that the subgrid-scale model acts on the complete range of resolved
scales in classical LES, which is de�nitely not a speci�c feature of the dynamic modelling
procedure of Germano et al. [15], the crucial di�erence pointed out in Figure 3 refers to the
range of scales exploited to �x the undetermined constant in the respective model. In the
dynamic modelling procedure of Germano et al. [15], the small resolved scales are exploited,
and the constant is calculated based on the Germano identity. In the ‘VMM-3-LES’ with the
respective dynamic modelling procedure, the unresolved scales are, so far in a crude manner
(see Reference [17] for discussion), estimated, and the resulting model is then applied to the
small resolved scales. Furthermore, the approximation of the small resolved scales via the
localized residual-free bubble strategy should be reemphasized.
The underlying idea and the reason for the success of the dynamic modelling procedure in

Germano et al. [15] has to be found in the hypothesis of the similarity between the unresolved
scales and the small resolved scales. It is, however, certainly unquestionable that no scales are
more similar to the unresolved scales than the unresolved scales themselves. Thus, a dynamic
modelling procedure estimating the unresolved scales appears to be promising in the authors’
point of view, although the actual estimation is still crude.

E(� �

�

�

) ∼ –5/3

ln

ln E( )

ln DPGln ~
DPG

Dynamic Procedure of
Germano et al. [15]

Dynamic VMM--3--LES

lrs srs urs

unmodeled
RFB +
model estimate

exploit

model

lrs: large resolved scales
srs: small resolved scales
urs: unresolved scales

ln VMM ln VMM� �
��

′

Figure 3. Comparing the dynamic procedure of Germano et al. [15] to the dynamic VMM-3-LES.
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A �nal remark in this context is devoted to the important question of how large the size
of the space containing the large as well as the small resolved scales should be chosen both
absolutely and in comparison to each other. In general, it should be remarked that using a
variational projection allows for a clear separation of scales and, accordingly, scale spaces in
contrast to, for example, discrete smooth �lters, which are widely used in traditional LES.
The combined extension of both spaces is de�nitely restricted by the computational e�ort
which can be a�orded overall. This essential restriction for the overall size of both spaces,
however, still leaves room for deciding on the relative extension of the spaces. A �rst basic
requirement for choosing the ‘cuto�-level’ of the large-scale space may demand this space to
cover at least the range of energy-containing modes, i.e. alternatively expressed, the location
of the ‘cuto�-level’ is supposed to be within the inertial subrange. This basic requirement
has already been taken into account in the depiction of the Kolmogorov energy spectrum
in Figure 1. Aside from this, several numerical tests of the dynamic modelling procedure
according to Germano et al. [15] revealed an optimal value for the ‘cuto�-level’ associated
with a test �lter (̃·) which is about twice as large as the one associated with the basic �lter (·),
see e.g. Reference [1]. This may also be accepted as a �rst hint for an adequate choice of the
respective relation of large- and small-scale space within the variational multiscale method. It
is also referred to the related discussion in Reference [5].
It is without doubt that the aforementioned choices strongly a�ect the actual impact of a

potential subgrid-scale model. On the one hand, the combined size of large- and small-scale
space in�uences the overall impact. For a very �ne resolution, i.e. a very large size of large-
and small-scale space together, there are only few unresolved scales left to be modelled.
However, the overall impact of the subgrid-scale model will become crucial, if this combined
resolution of large- and small-scale space is rather poor. This rather general perception is
de�nitely valid for both ways of performing LES, the traditional and the multiscale approach.
On the other hand, the relative size of large- and small-scale space in�uences the speci�c
impact within the variational multiscale method. A dominant large-scale space in comparison
to the small-scale space leaves the majority of the scales without the addition of a modelling
term. This eventually results in a pure DNS for the extreme case that all scales, with no
unresolved scales left, are actually contained in the large-scale space. In contrast to this, a
diminutive large-scale space tends towards the classical approach of LES again, since the
subgrid-scale model is added to a substantial margin of the resolved scales. Here, the extreme
case with all scales, but still leaving unresolved scales, contained in the small-scale space has
to be considered as the classical LES approach again. It should be remarked that this last
case is not feasible using residual-free bubbles for approximating the small-scale part of the
solution. For further discussion, it is referred to Reference [8].
Concluding this discussion, it may simply be reiterated that the absolute as well as the

relative choice of the respective spaces considerably in�uences the overall procedure. In fact,
its actual selection is an important parameter of the method. Aside from this, it is undoubted
that the scope of the particular method based on residual-free bubbles is explicitly limited.
The restriction of the small-scale solutions to individual element domains of the basic dis-
cretization basically appears to demand a dominant large-scale space in return. Nevertheless,
the numerical simulations of turbulent �ow situations to be described in the following section
are conducted with rather coarse large-scale spaces, in order to gain an impression about
the performance of this particular method under these less favourable, yet rather a�ordable,
circumstances.
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6. NUMERICAL EXAMPLES

6.1. Lid-driven cavity �ow (3-D)

The turbulent recirculating �ow in a 3-D lid-driven cavity exhibits the occurrence of
Taylor–G
ortler-type vortices, which are formed as a result of the curvature of the stream-
lines due to the �rst vortex. Experimental data are reported in Reference [36] for �ows at
Reynolds numbers 3200; 5000; 7500, and 10 000 inside cavities with varying spanwise aspect
ratio (SAR). The SAR is de�ned as the ratio of the lengths of the cavity in x3 and in x1
direction. Zang et al. [37] performed LES using a �nite volume method with the dynamic
modelling procedure of Germano et al. [15], which they called DSM, and a dynamic mixed
model (DMM), where they, additionally, took into account the scale similarity model accord-
ing to Bardina et al. [38]. Three cases are reported in Reference [37]: a �ow at Reynolds
number 3200 and SAR of the cavity being 1.0 on a 32× 32× 32 grid as well as �ows at
Reynolds numbers 7500 and 10 000, respectively, with SAR of the cavity being 0.5 on a
64× 64× 32 grid. The grid points are clustered near the walls in x1 and x2 direction, with the
smallest control volume length in these directions being 0.01 for Reynolds numbers 3200 and
7500 as well as 0.005 for Reynolds number 10 000, respectively. Based on the experimental
data in Reference [36], they describe the �ow at Reynolds number 3200 to be essentially lam-
inar, although an inherent unsteadiness may occur. At Reynolds number 7500, a transitional
stage is reached, since the �ow becomes unstable near the downstream eddy for Reynolds
numbers higher than about 6000. At even higher Reynolds number of about 10 000, the �ow
becomes fully turbulent. Thus, laminar, transitional, and turbulent regimes were covered by
choosing these three cases in Reference [37]. Further numerical studies using a �nite element
method can be found in References [39, 40].
Following the guidelines of Reference [37], the three Reynolds numbers 3200; 7500, and

10 000 are studied here as well. However, all three �ows are considered in a cavity with
SAR 1.0, i.e. a cavity with unit length in all three coordinate directions. No-slip boundary
conditions for the velocity are assumed on all cavity walls, except the top wall, where a
velocity of 1.0 in x1 direction is prescribed. The pressure is prescribed at one node of the
bottom wall, in order to �x the constant the pressure is determined up to in a problem with
Dirichlet boundary conditions at all boundaries. A relatively coarse basic discretization with
16× 16× 16 trilinear hexahedral elements is chosen for all �ow situations. This corresponds
to 10 125 velocity and 3374 pressure degrees of freedom, respectively, related to the basic
discretization. The discretization is linearly re�ned towards the walls in x1 and x2 direction
with the smallest element length being 0.02 in these directions. For the second level of the
two-level method, uniform elementwise submeshes with 4× 4× 4 elements are chosen. For
the second and third level of the three-level method, uniform elementwise submeshes with
3× 3× 3 elements and sub-submeshes with 4× 4× 4 elements are chosen, respectively. This
overall choice of coarse discretizations on all three levels is consistent with the predominant
goal of investigating the performance of the considered methods with a relatively coarse
resolution.
Analog to what is done in References [37, 40], an impulsive start is performed, i.e. the

initial condition is a zero velocity �eld. The Crank–Nicolson scheme is used for the temporal
discretization with a time step �t=0:1 time units. A time scale Tcav is de�ned in Reference
[37] to be the estimated time for a particle at the edge of the top boundary layer to travel
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back to its starting position. This time scale is roughly estimated to be about 10 time units
for the present simulations. Initially, each simulation is run for �ve time scales Tcav, i.e. 50
time units or 500 time steps. Within this time period, the �ow is expected to develop to full
extent including a subsequent relaxation time. Afterwards, statistics are collected for another
�ve time scales Tcav.
All results are compared to the experimental data of Reference [36]. Unfortunately, the

experimental data for the �ow at Reynolds number 7500 was only evaluated for one half of
the cavity. Moreover, the numerical simulations in Reference [37] were merely performed for
a cavity with SAR 0.5 at Reynolds numbers 7500 and 10 000. Thus, a direct comparison with
these numerical data is not feasible. The mean velocities 〈u1〉 and 〈u2〉, which are evaluated as
a discrete time average, are analysed on the centrelines x1 = 0:5 and x2 = 0:5, respectively, in
the mid-plane of the cavity, i.e. in the plane x3 = 0:5. Furthermore, the root-mean-square values
of the velocities u1 and u2 as well as the component 〈uf

1 u
f
2 〉 of the Reynolds stress tensor

are evaluated, where uf
i denotes the �uctuating velocity component in xi direction. The root-

mean-square values and the Reynolds stress components are multiplied by the ampli�cation
factors 10 and 500, respectively, in order to guarantee a reasonable visual impression of these
values within the respective diagrams. Additionally, the temporal evolution of the total kinetic
energy in the domain � of the cavity subject to

Ekin(uh)=
1
2

∫
�
uh · uh d� (49)

is depicted.
Various methods are investigated. Firstly, a stabilized method of USFEM-type (see e.g.

Reference [41]) is applied. Secondly, the Smagorinsky model is employed in a PSPG �nite
element method according to (21). The Smagorinsky constant is �xed to be CS =0:1, and the
element length 	h is de�ned to be the cubic root of the element volume, i.e. 	h= 1

16 for the
present discretization. Thirdly, the two-level method and the three-level method with dynamic
as well as ‘static’ modelling are used. At Reynolds numbers 3200 and 7500, results obtained
with the dynamic modelling procedure are reported. At Reynolds number 10 000, results ob-
tained by applying the Smagorinsky model with CS =0:1 as a ‘static’ way of modelling are
reported. This last case may clearly exhibit di�erences between the application of the rel-
atively simple and, hence, computationally e�cient Smagorinsky model on level 2 and the
application one level ‘lower’ on level 3. Further results obtained using dynamic and ‘static’
models within the multi-level methods for �ows at other Reynolds numbers, which are not
reported here, have not revealed distinctive features in signi�cant contrast to the ones given
here.
Figures 4–6 display the temporal evolution of the total kinetic energy for the three investi-

gated cases. The introduction of various amounts of numerical viscosity bears an interesting
consequence for the results of this �ow example. It is well-known from the physical point of
view that the higher the physical viscosity of the �ow, the larger is the zone of in�uence of
the prescribed velocity at the top boundary of cavity. Simply spoken, the higher the physical
viscosity, the larger are the extensions of the layers at the respective boundaries of the cavity
towards the centre of the cavity. Here, this leads to the fact that the method which is supposed
to introduce the highest amount of numerical viscosity also exhibits the highest values of the
total kinetic energy throughout the simulation. This is observed at all three Reynolds numbers.
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Figure 4. Temporal evolution of total kinetic energy at Re=3200.
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Figure 5. Temporal evolution of total kinetic energy at Re=7500.

The three-level method and the USFEM bear about the same amount of numerical viscosity
at Reynolds numbers 7500 and 10 000, see Figures 5 and 6. The USFEM is more viscous at
the lowest Reynolds number 3200, see Figure 4. The two-level method introduces the least
numerical viscosity in every considered case. This discrepancy becomes quite substantial at
higher Reynolds numbers.
As expected, sample calculations using higher and lower values for the Smagorinsky con-

stant have yielded respective higher and lower values of the total kinetic energy. Furthermore,
a test calculation with an alternative de�nition of the characteristic element length 	h, namely
the streamlength, i.e. the length of the element in streamline direction, has led to a substantially
higher value of the total kinetic energy. This result for such an element length de�nition,
which is often used for the stability parameter calculation within stabilized methods, has to
be expected, since it usually produces a larger element length 	h than the one obtained as
the cubic root of the element volume. This emphasizes the sensitivity of the results to the
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Figure 6. Temporal evolution of total kinetic energy at Re=10 000.

choice of the Smagorinsky constant as well as the element length de�nition. This was also
investigated in Reference [37], where the authors display the progression of the Smagorinsky
constant obtained via the dynamic procedures DSM and DMM throughout the centrelines in
the mid-plane. They were able to show that CS from DMM is nearly everywhere, except from
a few peaks, substantially smaller than 0.1. In comparison, DSM produces considerably larger
values.
The pro�les for the mean velocities 〈u1〉 and 〈u2〉 on the centrelines in the mid-plane of

the cavity for the various cases are analysed in Figures 7(a), 8(a), and 9(a). It is stated
that the USFEM as well as, in particular, the PSPG method with the Smagorinsky model
overpredict the experimentally determined velocity values and the two- as well as three-level
method underestimate them at Reynolds number 3200, with one noticeable exception for 〈u2〉
at the right boundary. At Reynolds numbers 7500 and 10 000, the two- and, in particular,
the three-level method exhibit a remarkably good agreement with the experimental data, even
with the present coarse basic discretization. The Smagorinsky model as well as the USFEM
still overpredict at these Reynolds numbers.
This good prediction is not maintained for the root-mean-square values and, in particular,

the components of the Reynolds stress. The general tendency of the experimental curve for
the root-mean-square values at Reynolds number 3200 in Figure 7(b) is reproduced by the
various methods. The Smagorinsky model is the only method which, on the one hand, correctly
predicts the lower peak of the vertical curve and, on the other hand, overpredicts both peaks
of the horizontal curve. Similar observations, however in a more distinct manner, are made
for the Reynolds stresses depicted in Figure 7(c). It should be emphasized that mispredictions
of various peaks of these curves, although less articulate, can also be found in the numerical
results of Reference [37], which were achieved with a two times �ner discretization in each
coordinate direction. Some noticeable deviations may even be observed in the numerical results
of Reference [39], which were obtained using an almost four times �ner discretization in each
coordinate direction. These observations underline the di�culty in predicting these values.
Aside from this, experimental uncertainties cannot be ruled out completely either. Under
these circumstances, it is stated that the root-mean-square values in Figures 8(b) and 9(b),
at least partly, as well as the Reynolds stresses in Figures 8(c) and 9(c) for the most part,
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Figure 7. Variables on the centrelines in the mid-plane for Re=3200 and SAR 1.0: (a) mean velocities;
(b) rms velocities (factor 10); and (c) Reynolds stress (factor 500).

respectively, cannot be considered as a su�cient prediction of the experimental data for all
applied methods. Most probably, the relatively coarse basic discretization, which has been
chosen for the present simulations, simply has to be considered as being insu�cient, at least
for a correct predicition of these extremely sensitive values.

6.2. Plane mixing layer (2-D)

Mixing layers are encountered in aerodynamics, in the atmosphere or the ocean, e.g. in
the wake of mountains, in the Gulf stream or in the Mediterranean sea, as well as in the
atmospheres of Jupiter and Saturn at the interface between neighbouring zonal jets, see e.g.
Reference [42]. It is actually a �ow developing far away from boundaries, and, thus, the
in�uence of boundaries is eliminated in this �ow example. As an answer to potential objec-
tions that a two-dimensional �ow does not lead to what is usually perceived as ‘turbulence’,
the following features of the �ow considering it to be ‘turbulent in a certain sense’ may be
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Figure 8. Variables on the centrelines in the mid-plane for Re=7500 and SAR 1.0: (a) mean velocities;
(b) rms velocities (factor 10); and (c) Reynolds stress (factor 500).

returned according to Reference [42]:

• The �ow is extremely sensitive to the initial condition. In fact, it would be completely
unpredictable in an in�nite domain. This was proven by investigating two �ows which
were initially very close in the relevant parameters. In an in�nite domain, these two �ows
would show a complete decorrelation. Only the �nite domain, which has to be chosen
for the simulation being viable, ‘prevents’ the �ow from being completely unpredictable.

• After a �rst pairing, which will be described below, a broadband energy spectrum of
slope intermediate between k−4 and k−3 is developed. The interaction between two- and
three-dimensional turbulence related to this �ow situation was elaborated in Reference
[42, Section 4].

Aside from this important physical rationale for choosing this �ow example as a ‘turbulent’
�ow example, a much more pragmatic point of view quali�es a 2-D �ow example as a
legitimate test case for the present methods by saying that, if the methods do not work
properly for a 2-D example, it will be unlikely to work for any 3-D example.
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Figure 9. Variables on the centrelines in the mid-plane for Re=10 000 and SAR 1.0: (a) mean velocities;
(b) rms velocities (factor 10); and (c) Reynolds stress (factor 500).

The domain of the problem is de�ned to be �= [0; 1]× [0; 1], see Figure 10(a). No, i.e. free-
slip, boundary conditions are applied at the boundaries x2 = 0 as well as x2 = 1 and periodic
boundary conditions at the boundaries x1 = 0 as well as x1 = 1. The pressure is prescribed to
be zero at the mid-point x1 = 0:5 of the lower boundary x2 = 0. The initial velocity �eld is
given by a hyperbolic tangent pro�le as

u1(x2)= u1;max tanh
(
2x2 − 1

�0

)
(50)

where �0 denotes the initial vorticity thickness. According to Reference [43], �0 is chosen
to be 1

28 . The velocity component u2 is assumed to be zero initially. The initial velocity
distribution (50) is displayed in Figure 10(b).
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Figure 10. Plane mixing layer: (a) domain with boundary conditions;
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A white-noise perturbation of small amplitude is imposed on the initial velocity �eld,
expressed in a streamfunction formulation as

 per = cnoiseu1;max e−((x2−0:5)=�0)
2
cos(�x1) (51)

It may be proven by the reader that this perturbation is divergence-free. The corresponding
wavenumber is �=2�=� with the wavelength �. This random perturbation injects energy into
all longitudinal spatial modes according to Reference [42] and should, therefore, reasonably
approximate the case of a real mixing layer that is naturally submitted to a residual turbulence
having a broadband spectrum. The small perturbation in the initial condition is expected to
be ampli�ed by so-called Kelvin–Helmholtz instabilities during the evolution of the �ow.
According to Reference [44], the most unstable wavelength �a is given by �a=7�0, i.e.
�a= 1

4 in this case. The most ampli�ed wavenumber is

�a=
2�
�a
=
2�
7�0

= 8� (52)

Thus, a number of nvort Kelvin–Helmholtz vortices is expected to develop in the streamwise
direction for a domain with length ls=7�0nvort in this direction. With unit length chosen here,
4 vortices are supposed to appear. As may be observed in (51), a deterministic sine perturba-
tion is also imposed. This results in �xing the position of the Kelvin–Helmholtz vortices on
the x1-axis. Otherwise, the vortices would take a randomly distributed position from one run
to another, see Reference [42]. The sum of two waves with wavelength �a= 1

4 and a smaller
wavelength �a= 1

10 , respectively, are chosen according to Reference [43]. Consequently, the
�nal velocity components including the perturbation are

u1;per(x2)= u1;max

[
tanh

(
2x2 − 1

�0

)
+ cnoise

@ per
@x2

]
(53)

and

u2;per(x2)= − u1;maxcnoise
@ per
@x1

(54)
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Figure 11. Coloured vorticity �eld (blue: intense vorticity, red: irrotational outer �ow) at time units
10; 20; 30; 40; 70; 100; 110; 120; 200 (left to right, top to bottom).

where u1;max and cnoise are speci�ed to be 1 and 10−3, respectively. With these parameter spec-
i�cations and a viscosity of �=3:571× 10−6, the Reynolds number of the problem amounts
to be

Re=
u1;max�0

�
=10000 (55)

Furthermore, a non-dimensional time unit, which is to be used later on, is de�ned as the
actual time scaled by �0=u1;max = 1

28 .
The physical evolution of the �ow is explained via Figure 11. This picture series has

been obtained from a simulation using the basic method, which will be described below, with
160× 160 elements. The �ow situations at non-dimensional time 10; 20; 30; 40; 70; 100; 110; 120,
and 200 are displayed. Four di�erent stages of this �ow may be distinguished:

• Development of four primary eddies: The distinct appearance of the four primary ed-
dies can be observed at about 15 time units. This corresponds to the point in time

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1067–1099



LES OF TURBULENT INCOMPRESSIBLE FLOWS BY A THREE-LEVEL FEM 1091

0 50 100 150 200
0

5

10

t
�0

u1,max

development of 4 primary eddies

1st pairing
2nd pairing

� �
0

Figure 12. Principal sketch of the temporal evolution of the vorticity thickness (cf. Figure 11).

also observed in Reference [42] for the development to occur. John [45] found a later
development at 30 time units.

• First pairing: The �rst pairing takes place at about 35 time units. Again, this compares
exactly to the point in time noticed in Reference [42]. The later pairing in the simulation
in Reference [45] at about 80 time units proceeded in a non-symmetric procedure, i.e.
one pairing started earlier than the other. Here, both pairings occur at the same time.

• Second pairing: The second pairing is �nished at about 115 time units. This is a later
point in time in comparison to Reference [42] (75 time units) as well as an earlier one
in comparison to Reference [45] (140 time units).

• Rotation of the �nal vortex: After the end of the second pairing, the �nal vortex rotates
at a �xed position. The value of the vorticity thickness oscillates during this stage due
to the elliptic shape of this vortex, confer Figure 12.

Four aspects of the �ow are recorded quantitatively and displayed in Figures 13–16: the mean
velocity 〈u1〉, the root-mean-square value of the velocity u1, the total kinetic energy in the
�ow domain, and the vorticity thickness. The mean velocity 〈u1〉 at every node is evaluated
as a discrete time average over the complete simulation time. In addition, these nodal values
are spatially averaged over the periodic x1 direction, in order to achieve a �nal velocity
pro�le along the x2 direction. The respective root-mean-square value is evaluated during the
same averaging procedure. The total kinetic energy has already been de�ned in (49), and this
de�nition is also applied in this example for the quanti�cation of the temporal evolution of
the energy. In principal, an evolution exhibiting a somehow decaying total amount of kinetic
energy has to be expected, since the initial velocity distribution is subject to a non-zero
viscosity, and no additional energy input is provided.
The scalar vorticity in the 2-D case is given as

!=
1
2

(
@u2
@x1

− @u1
@x2

)
(56)
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The maximum value of ! may be de�ned as

!max(t)= sup
x2∈[0;1]

|〈!〉(x2; t)| (57)

where 〈!〉(x2; t) denotes the integral mean in the periodic x1 direction reading

〈!〉(x2; t)=
∫ 1
0 !(x1; x2; t) dx1∫ 1

0 dx1
=

∫ 1

0
!(x1; x2; t) dx1 (58)

In the practical computation, this integral is discretely evaluated for all mesh lines parallel to
the x1-axis according to Reference [45], and the maximum of these results is employed for
!max. Based on this maximum value of !, the vorticity thickness � is de�ned as

�(t)=
�uml

!max(t)
=
2u1;max
!max(t)

(59)

with �uml indicating the velocity jump across the mixing layer. The initial value for the
vorticity thickness corresponding to the undisturbed velocity distribution is chosen to be
�(t=0)= �0 = 1

28 . All values t¿0 are scaled by this initial value �0. A principal sketch of the
temporal evolution is displayed in Figure 12 related to the calculation depicted in Figure 11.
The particular stages of the respective �ow, which have been characterized in the preced-
ing section, may also be discovered in this course. The maximum values of the vorticity
thickness at the �rst and second pairing are slightly higher than the comparable values in
References [42, 45].
Basic discretizations with 40× 40, 80× 80, 160× 160, and 240× 240 bilinear quadrilateral

elements of uniform length are chosen, respectively. This corresponds to 3280; 12 960; 51 520,
and 115 680 velocity and 1639; 6479; 25 759, and 57 839 pressure degrees of freedom, respec-
tively, related to the respective basic discretizations. The submeshes and the sub-submeshes
are created with the same number of elements in each coordinate direction as in the previous
example of the lid-driven cavity. Of course, this is restricted to two coordinate directions
in the present 2-D case. With the 240× 240 mesh, the resolution level of the quasi-DNS
in Reference [42] is almost reached. Boersma et al. [43] applied local grid re�nement up
to this level only in the middle part of the �ow domain, starting from an initial 80× 80
discretization. The discretization in Reference [45] reached even further than the one in Ref-
erence [42] by using elements employing biquadratic velocity interpolation and discontinuous
bilinear pressure interpolation for a DNS. This resolution level is comparable to 1024× 1024
purely bilinear elements with respect to the number of velocity degrees of freedom, which
is about 2 million. The number of pressure degrees of freedom, however, is considerably
lower for this type of elements and resolution level in comparison to equal-order interpolated
bilinear quadrilaterals.
Starting with the perturbed initial velocity �eld given in (53)–(54), the Crank–Nicolson

scheme is used for the temporal discretization with a time step �t=0:35�0=u1;max =0:0125.
Overall, 570 time steps are performed, resulting in a simulation time of approximately 200
non-dimensional time units. Statistics are collected during the complete simulation time.
Various methods are investigated. Firstly, a basic method is de�ned below. Secondly, the
Smagorinsky model already used in the previous example is applied, i.e. the Smagorinsky
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constant is again chosen to be CS =0:1. Thirdly, the two-level method as well as the three-
level method with dynamic modelling are applied.
A �rst attempt to de�ne a ‘pure’ PSPG �nite element method as the basic method for

the following investigations has failed even for the �nest discretization with 240× 240 ele-
ments. An immediate energy blow-up has been observed for this method, irrespective of the
discretization. This is consistent with observations reported in the aforementioned literature
dealing with this �ow example. Even in Reference [42], a biharmonic dissipative term is
added to the formulation applied on a 256× 256 grid. (By the way, this explains the labelling
‘quasi-DNS’ for this simulation in Reference [42].) In Reference [43], a Smagorinsky term
with CS =0:1 is added to the method which is applied on the �nest grid with 240× 240 grid
points. In Reference [45], an energy blow-up is explicitly mentioned for a simulation without
any additional dissipative term on a discretization level roughly comparable to a 128× 128
mesh. According to the conclusion that it appears to be impossible to perform a DNS with
the present discretizations, an additional dissipative term is incorporated into the PSPG �nite
element method. Deviating from the frequent use of the Smagorinsky model, an alternative
in the form of a bulk viscosity term according to (42) is employed here. With this supple-
mentary dissipative term, a reasonable basic method can be de�ned and is actually used in
the following simulations.
In Figures 13 and 14, the results for simulations with the previously described basic method

on various discretization levels are displayed. Figure 13(a) shows that the mean velocity
pro�les achieved with the various discretizations are fairly close together. The curves for the
root-mean-values displayed in Figure 13(b) uncover the expected di�erences for the various
resolution levels more distinctly. With regard to the temporal evolution of the total kinetic
energy depicted in Figure 13(c), it is stated that the lower the resolution level, the higher the
overall energy loss, i.e. the more dissipative is the method. An interesting observation may be
made by analysing the temporal evolution of the vorticity thickness in Figure 14. The results
for the 240× 240 mesh and the 160× 160 mesh almost coincide. However, the character of
the curve is substantially modi�ed for the coarser discretizations. In particular, it is observed
that the coarser the discretization, the later the point in time indicating the �rst pairing, and,
simultaneously, the sooner the second pairing. Furthermore, the actual values of the various
amplitudes also appear to be quite di�erent. It is concluded that the chosen discretization
level has a considerable in�uence on the temporal development of the vorticity thickness and,
hence, on the character of the �ow.
The same conclusion is drawn for the investigation of various methods on the same res-

olution level instead of one method on various discretizations. The coarsest basic discretiza-
tion with 40× 40 elements is chosen for this purpose, in order to study the performance
of the method under these less favourable circumstances, as already mentioned at the end of
Section 5. Figure 16 shows the temporal evolution of the vorticity thickness for the aforemen-
tioned four methods. The basic method and the Smagorinsky model are fairly close together,
which may be justi�ed by their inherent similarity. Despite the small di�erence in the actual
method, however, both curves may be precisely distinguished. The di�erences in comparison
to the two- and three-level methods are evident, and also the di�erences between the two
multi-level methods. In particular, the �nal stage of the simulated �ow exhibits interesting
varieties. The �nal vortex in the simulation using the basic method reveals a slightly elliptic
character, confer also the last picture of the series in Figure 11 in this context. In contrast
to this, the two-level method, on the one hand, produces an almost circularly shaped �nal
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Figure 17. Evolution of the total kinetic energy for the USFEM on various discretizations.

vortex, and the three-level method, on the other hand, generates a more distinctly elliptic vor-
tex at the end of the simulation. This is indicated by the amplitude of the oscillations in the
temporal evolution of the vorticity thickness during the �nal stage of the �ow. It is possible
to verify with suitable calculations that this general tendency is not changed by using, for
instance, a two-level method with a �ner 8× 8 submesh or a three-level method with various
‘static’ ways of modelling. After observing the velocity pro�les in Figures 15(a) and (b), it
is concluded that the two- level method fails to produce reasonable results at this Reynolds
number. In particular, the overshoots in the left as well as the right section of the curve for
the mean velocity in Figure 15(a) provide evidence for this conclusion. Finally, the temporal
evolution of the energy depicted in Figure 15(c) indicates that the two- and the three-level
method are less dissipative than the basic method, and the Smagorinsky model is the most
dissipative of all methods, as expected.
A �nal remark should be made with regard to the stabilized method of USFEM-type for this

particular �ow example. There is a de�nite and fatal reason for the disregard of this method,
see Figure 17. For every discretization under investigation, an energy blow-up has been ob-
served, which starts approximately at the occurrence of the second pairing. Comparing the
USFEM-type method to the basic method introduced before, it may be concluded that for
the employed bilinear elements the only major di�erence between these two methods con-
sists in the convective stabilization term, i.e. alternatively expressed, the classical SUPG-term,
which introduces a certain amount of dissipation in the streamline direction. Further investi-
gations have revealed that the zone of in�uence in which this energy blow-up emerges can
be restricted to the vicinity of the upper and lower (free-slip) boundaries. More precisely, a
sinusoidal perturbance with small amplitude on top of the actually constant velocity distribu-
tion of (absolute) unit value along the upper and lower boundary arises around the time of
the second pairing. The amplitude is quickly ampli�ed provoking the drastic energy blow-up
in Figure 17 and causing the simulation to break down eventually. This issue is not pursued
further, since the main focus of this work is not on stabilized methods. It is, however, inter-
esting to note that this problem has not been observed for the two- and three-level method
despite the close a�nity between the USFEM and the multi-level �nite element methods.
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7. CONCLUSIONS

The variational multiscale method provides a methodical framework for the numerical simula-
tion of turbulent �ows. An important aspect of the particular implementations in this work, a
two- and a three-level �nite element method, is the use of residual-free bubbles with assumed
zero Dirichlet boundary conditions on the element boundaries. This implementation guaran-
tees the stability of the methods without further provisions and o�ers substantial computational
savings on the small-scale level. Superior results with respect to an unusual stabilized �nite
element method (USFEM) have been obtained in the numerical �ow examples of this work.
On the contrary, however, the use of residual-free bubbles is also the reason for potential
shortcomings of these methods, when coarse basic discretizations are used.
The multi-level methods are still open to improvement with regard to various aspects of

the implementation. In particular, the dynamic procedure on the third level, which is ini-
tially based on some crude approximations, still invites to some further considerations. Even
with substantial improvements, however, the aforementioned main drawback of the multi-level
methods in this particular implementation remains and needs some further investigation, es-
pecially for the application to turbulent �ows. Nevertheless, a somehow localized approach
on the second level appears to be adequate for numerical simulations of turbulent �ows.
This is mainly due to perceptions of turbulence theory, which have shown that, for example,
two-point correlations exhibit, in principal, a substantial signi�cance only over a �nite sector
of the �ow domain. The crucial measure in this context is the integral length scale and its
relation to the length of the �ow domain, both depending on the respective �ow situation.
The extreme localization procedure used in the present work, which resulted in a restriction
of the permissible interaction of the small resolved scales to individual elements of a basic
discretization, certainly exceeds the tolerable degree of localizing the small scales by far.
However, a strategy ranging between this extreme localization, on the one hand, and a com-
pletely global concept demanding enormous computer resources, on the other hand, appears
to be a very attractive future approach.
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